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Abstract. An approach is proposed and outlined to study the scattering cross section of a
polaron by a weak Coulomb field in the presence of an external single-mode linearly polarized
laser field. The frequency of the laser field is assumed to be much larger than the optical phonon
frequency. The scattering cross section is found to be more sensitive to the electron–photon
interaction than to the electron–phonon interaction.

The problem of the motion of an electron in an ionic crystal has been of interest [1] long since
the pioneering work of Fr̈ohlich (1954) [2], where he first developed his model Hamiltonian,
which is universally known as the Fröhlich continuum polaron Hamiltonian. The basic
assumption in the construction of this Hamiltonian is that the De Broglie wavelength of
the electron is very much larger than the interionic separation so that the discrete dielectric
lattice may be treated as a continuum medium in which the dressed electron (polaron)
behaves like a free particle.

In the present work we propose an approach to calculate the scattering cross sections of
the Fr̈ohlich polaron by a weak Coulomb field in the presence of an external single-mode,
linearly polarized, homogeneous laser field represented classically byε(t) = ε sin(ωt).
The corresponding vector potential of the laser field in the Coulomb gauge is given by
A(t) = A0 cos(ωt), with A0 = cε/ω, ε andω being the intensity and frequency of the
laser field, andc the velocity of light. This work has relevance to the study of transport
phenomena in a dielectric medium in the presence of impurity centres.

The static properties of a polaron in the presence of a Coulomb field have been
investigated previously [1]. In the present work we are interested in studying the dynamical
properties of such a system in the presence of an external laser field. In fact, although the
static properties of a polaron in an external field have been studied extensively [1, 3–5],
relatively few theoretical treatments are available for its dynamical properties. Most of
the dynamical calculations were confined to the study of transport properties, e.g. electron
mobilities and conductivity [6]. To our knowledge, no explicit calculation for the scattering
cross sections of a polaron by a Coulomb potential in the presence of an external field has
yet been reported.

The frequency of the laser fieldω is assumed to be much larger than the phonon (optical)
frequency (ω0) so that the interaction of the laser field with the phonon may be neglected
as compared to the electron–laser field interaction. Further, the electrical component of the
laser field is kept far below the dielectric breakdown limit. In the present work we have
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neglected any sort of excitation of the source of the Coulomb field. In other words we
consider the elastic channel only.

The modified Fr̈ohlich Hamiltonian for this process is given by [5]

H0 =
[
p− e

c
A
]2
+ 1

2
h̄ω0

∑
q′

[b†q′bq′ + bq′b†q′ ] + 4π i

(
e2h̄

2γω0V ′

)1/2

×
∑
q′

1

q ′
[b†q′ exp(−iq′ · r)− bq′ exp(iq′ · r)]. (1)

We now scale [2] the energy by ¯hω0 and the length byu−1 whereu = (2mω0/h̄)
1/2. The

dimensionless Hamiltonian takes the form

H̃0 = −∇̃2+ iÃ · ∇̃+
∑
q

b†qbq + i

[
4πα

Ṽ

]1/2∑
q

1

q
[b†q exp(−iq · r)− HC] (2)

whereÃ = A(2e2/h̄ω0mc
2)1/2 is the dimensionless vector potential,Ṽ is the dimensionless

volume,ω̃ and t̃ are respectively the dimensionless frequency and time given byω/ω0 = ω̃
and tω0 = t̃ , ∇̃ = [h̄/2mω0]1/2∇ andα is the electron–phonon coupling parameter. The
full Hamiltonian is thus given by

H = H0+ Vc (3)

whereVc (the impurity potential) = −2β/r, β being the dimensionless Coulomb parameter,
treated as a weak perturbation.

The scattering matrix element for such a process (in the first-order theory) is given by
[7]

Tif = −i
∫ ∞
−∞
〈ψf |Vc|ψi〉 dt̃ (4)

whereψi andψf are the initial and final states of the dressed polaron which are given by
solutions ofH̃0ψ = Ẽψ for weak electron–phonon interaction [8] (LLP), given by

ψ = ψ0

(
1− i

(
4πα

V

)1/2∑
q

exp(−iq · r)b†q
q(p− q)2+ 1− p2

)
5q|0q〉. (5)

In fact the above wavefunction is only the perturbative limit of the variational wavefunction
of Lee, Low and Pines (LLP) [8]. In (5)ψ0 is the solution of the following equation [9]:

[−∇̃2+ i(Ã · ∇̃)]ψ0 = i
∂ψ0

∂t̃

and is given by [7, 9]

ψ0 ∼ exp[i(p · r + ip · α0 sinω̃t̃ − Ẽt̃)] (6)

whereα0 = (eε/mω2)[2mω0/h̄]1/2 and p is the dimensionless polaron momentum. The
solutionψ0 is the Volkov solution [7, 9] representing the non-relativistic wavefunction for
the free electron in a laser field.

The first-order dimensionless polaron energy is chosen as [7]

Ẽ = p2− 4πα

Ṽ

∑ 1

q2[(p− q)2+ 1− p2]
= p2− α sin−1p

p

= −α + p2(1− α/6)+O(p4) for p < 1, α→ 0

= p2− πα
2p

for p > 1, α→ 0. (7)
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In view of the equations (3)–(5), the matrix element (4) reduces to the form

Tif = ã
∫ ∞∑

`=−∞

[
−2β

r
exp(−iQ · r)J`(Q ·α0)δ(Ef − Ei + `ω̃)

]
×
[

1+ 4πα

Ṽ

∑
q

1

q2[(pf − q)2+ 1− p2
f ][(pi − q)2+ 1− p2

i ]

]
dr (8)

whereQ = pf −pi andã is some dimensionless constant;J`(x) denotes the Bessel function
with argumentx. We now convert the summation overq to integration and then perform
the integration overr to obtain (apart from some numerical constants)

Tif ∼ (1/Q2)

∞∑
`=−∞

J`(Q ·α0)δ(Ef − Ei + `ω̃)[1+ (2π)−34παL] (9)

where

L = 1/(B2− AC)1/2 ln[B + (B2− AC)1/2/[B − (B2− AC)1/2]]

with

AC = 2[1− pi · pf + i{(1− p2
i )(p

2
f − 1)}1/2]

B = (1− p2
i )

1/2+ i(p2
f − 1)1/2.

The differential cross section for this process is given by

σ(θ) = pf

pi
|Tif |2. (10)

The total cross section is obtained by integrating the differential cross section over the solid
angle;

σt = 2π
∫ π

0
σ(θ) sinθ dθ. (11)

The conservation of energy is given by

Ẽf = Ẽi ± `ω̃ (12)

whereẼi and Ẽf are the initial- and final-state energies of the dressed polaron, which can
be obtained from (7) and (12) for some fixedpi , and ` is the quantum number of the
photon absorbed from the laser field (` = +1 corresponds to one-photon absorption and
` = −1 corresponds to one-photon emission). In this note we report only the results due
to absorption of one photon i.e.,` = +1, ω̃ � 1 (i.e.,ω � ω0) and for low initial polaron
momentum (pi < 1). The final polaron momentum is obtained from (7) and (12).

Table 1 displays the total scattering cross sections (TCSs) for different values ofα,
α0, β andpi with ω̃ = 100. It may be noted from the table that the TCS increases with
increasing Coulomb binding parameter (β) for fixed values ofα, α0 andpi . Moreover the
TCS is found to be much more sensitive to the electron–photon coupling (α0) than to the
electron–phonon coupling (α) parameter. It is also evident from table 1 that an increase
of the strength of the external laser field suppresses the TCS. For fixed values ofα, α0

andβ the TCS decreases with increasing polaron momentumpi as expected. The detailed
results (both differential and total cross sections) and their analysis will be communicated
in a future work.

Finally we would like to comment that, as a first attempt, the present model treats the
polaron perturbatively for simplicity. However for realistic situations, one should consider
the exact variational wavefunction for the polaron.
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Table 1. Laser assisted elastic cross sections (total) for electron in a dielectric medium in units
of u−2[u = √(2mω/h̄)] for ω̃ = 100 (ω̃ = ω/ω0), α0 = 0.365, andα0 = 3.65 (data within []).
The numbers in parentheses indicate the power of 10 by which the entry is to be multiplied.

α = 0.1 α = 0.5

pi β = 0.1 β = 0.5 β = 0.1 β = 0.5

0.1 8.94(−5) 2.23(−3) 9.12(−5) 2.28(−3)
[2.46(−5)] [6.15(−4)] [2.50(−5)] [6.25(−4)]

0.5 1.80(−5) 4.50(−4) 1.84(−5) 4.59(−4)
[2.84(−6)] [7.11(−5)] [2.92(−6)] [7.29(−5)]

0.9 1.02(−5) 2.55(−4) 1.08(−5) 2.69(−4)
[1.86(−6)] [4.65(−5)] [1.91(−6)] [4.76(−5)]
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